Controlling thermal emission of phonon by magnetic metasurfaces
نویسندگان
چکیده
Our experiment shows that the thermal emission of phonon can be controlled by magnetic resonance (MR) mode in a metasurface (MTS). Through changing the structural parameter of metasurface, the MR wavelength can be tuned to the phonon resonance wavelength. This introduces a strong coupling between phonon and MR, which results in an anticrossing phonon-plasmons mode. In the process, we can manipulate the polarization and angular radiation of thermal emission of phonon. Such metasurface provides a new kind of thermal emission structures for various thermal management applications.
منابع مشابه
اثر تهیجایهای گسترده بر خواص گرمایی نانونوارهای آرمچیری گرافن
This paper shows a theoretical study of the thermal properties of armchair grapehen nanoribbons in the presence of extended vacancies. Each graphene nanoribbons formed by superlattices with a periodic geometric structure, different size and symmetry of vacancies. The phonon dispersion, specific heat and thermal conductivity properties are described by a force-constant model and also by Landauer...
متن کاملSynthesis and investigation of thermal conductivity carbon nanotubes: MWCNT and SWCNT
In this study, Bio-based carbon nanotubes (CNTs) have received considerable research attention due to their comparative advantages of high level stability, simplistic use, low toxicity and overall environmental friendliness. New potentials for improvement in heat transfer applications are presented due to their high aspect ratio, high thermal conductivity and special surface area. Phonons have ...
متن کاملInfrared frequency-tunable coherent thermal sources
Infrared frequency-tunable coherent thermal sources Hao Wang, Yue Yang, and Liping Wang School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, Arizona, 85287, USA * Equal contribution. † Corresponding author. Email: [email protected], Phone: 1-404-727-8615 Submitted on October 24, 2014; Revised on January 18, 2015 Abstract In this work, we numerically demonstra...
متن کاملControlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions
Control of thermal radiation at high temperatures is vital for waste heat recovery and for high-efficiency thermophotovoltaic (TPV) conversion. Previously, structural resonances utilizing gratings, thin film resonances, metasurfaces and photonic crystals were used to spectrally control thermal emission, often requiring lithographic structuring of the surface and causing significant angle depend...
متن کاملSynthesis and Investigation of Structural, Magnetic and Antibacterial Properties of Calcium-Magnesium Ferrite Nanoparticles by Thermal Treatment Method
This paper reports optical, magnetic and antibacterial properties of calcium-magnesium nanostructure which was prepared by a simple thermal treatment method. Calcination was conducted at temperatures 500 K, The influence of calcination temperature on the degree of crystallinity, microstructure, and phase composition was investigated by different characterization techniques, i.e., X-ray diffract...
متن کامل